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Executive Summary 

 

Objectives: 

To ensure AI is ethical, it must be transparent. It is prudent, therefore, for an AI to provide not only an output, but also a human 

understandable explanation that expresses the rationale of the machine. T4.3 will provide a FAITH library of ML and HCI 

modules that provide for more understandable AI implementations, which will give our healthcare stakeholders more insight 

into the decisions that were made by the FAITH framework, and therefore more confidence in the decision-making process. WIT 

is responsible for this task and will be supported by the FAITH project partners, Suite5 and UPM, in the implementation of this 

Explainable AI framework. This deliverable reflects the work undertaken as part of T4.3 and is released in three stages at M12, 

M24, and M39. 

 

Results: 

The primary results of this deliverable, and particularly this iteration (M12) are an overview of the area of Explainable AI, and 

also those related areas that we believe need to be treated in parallel e.g., model reproducibility.  
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1 INTRODUCTION  

 

As the reach of Artificial Intelligence (AI) grows, transforming industries such as medicine, transport and defence, we find 

ourselves entrusting our health, safety and security to intelligent machines. A worry for many, however, is that these machines 

are “black boxes” i.e., closed systems that receive an input, produce an output, and offer no clue why. As Cathy O’Neil explains 

in Weapons of Math Destruction, algorithms often determine what college we attend, if we get hired for a job, if we qualify for 

a loan to buy a house, and even who goes to prison and for how long. Unlike human decisions, these mathematical models are 

rarely questioned. They just show up on somebody’s computer screen and fates are determined. Consider the case of Sarah 

Wysocki, a fifth-grade teacher who — despite being lauded by parents, students, and administrators alike — was fired from the 

D.C. school district because an algorithm judged her performance to be sub-par. Why? It’s not exactly clear, because the system 

was too complex to be understood by those who fired her.1  

 

Engineers may be able to deliver ever more accurate models, forecasting pandemic spread, classifying symptoms of mental 

disease etc. but if they cannot explain these models to the relevant decision-makers e.g., doctors, public health officials, 

politicians, then how can the models be trusted? Were something to go wrong, being unable to explain why could be the death 

knell to an otherwise transformative technology. 

 

Explainable AI (XAI) was pinpointed as one of the project’s four key areas of ambition. XAI is obviously of particular 

importance in healthcare, where the AI service might be making a clinical decision that could affect a person’s life. The FAITH 

AI, however, isn’t making an automated decision, it is providing the professional with an alert, leaving any diagnosis in their 

hands. That being said, we believe factoring in transparency and explainability from the start will strengthen FAITH for long-

term adoption.  

 

Marvin Minsky, one of the pioneers of AI, once said that “our mind contains processes that enable us to solve problems we 

consider difficult. Intelligence is the name for whichever of these processes we don’t understand”. An article2 on XAI cleverly 

changes this to say “our model contains processes that enable us to solve problems we consider difficult. ‘Black-box’ is the name 

for whichever of these processes we don’t yet understand.” 

 

 

1 https://hbr.org/2019/10/we-need-ai-that-is-explainable-auditable-and-transparent 

2 https://towardsdatascience.com/explainable-ai-vs-explaining-ai-part-1-d39ea5053347 
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2 ABBREVIATIONS AND ACRONYMS 

 

Abbreviation Description 

AI: Artificial Intelligence 

DL Deep Learning 

DVC: Data Version Control 

IG Integrated Gradients 

ISO: International Organization for Standardization 

LIME Local Interpretable Model-Agnostic Explanations 

LRP Layer-wise Relevance Propagation 

ISO9001-2015: International Quality Management Systems. 

ML: Machine Learning 

NTSB National Transportation Safety Board 

SHAP Shapley additive explanations 

XAI: Explainable Artificial Intelligence 
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3 EXPLAINABLE AI BACKGROUND 

This section will present an overview of the growing field of Explainable AI, explaining why it is important, and what it currently 

looks like. In terms of the FAITH project, we also include other relevant topics under the umbrella of this task e.g., 

reproducibility, bias, transparency etc.  It is our opinion that this holistic approach is the most beneficial for the success of the 

project.  

 

The first death on record involving a self-driving car occurred in Tempe, Arizona, in 2018.3  Elaine Herzberg was killed as she 

wheeled a bicycle across the road and was struck by an Uber self-driving car. Although lengthy investigations by police and the 

US National Transportation Safety Board (NTSB) found that human error was mostly to blame for the crash (the back-up driver 

was found to have been using her phone), it brought to the fore new concerns around AI. As intelligent machines play an ever 

more important part in our lives, how can we trust them, particularly if they fail us? The vehicle’s automatic systems failed to 

identify Ms Herzberg and her bicycle as an imminent collision danger in the way they were supposed to.  

 

It is no wonder that explainability in machine learning is a very active topic, even receiving its own symposium at NIPS 2017. 

As Machine Learning (ML) systems become ever more widespread so does the fear of them being black boxes, i.e., closed 

systems that receive an input, produce an output, and offer no clue why. To ensure AI is ethical and trustable, it must be 

transparent. It is prudent, therefore, for an AI to provide not only an output, but also a human understandable explanation that 

expresses the rationale of the machine (Doran, Schulz and Besold 2017). As AI pushes into the mainstream this idea gets a lot 

of attention, even appearing as a section in the New York Times4.  

 

It's almost never enough to have a model that works well. We need to understand how a model works not just because we are 

scientifically curious, but also to make sure that it's not taking shortcuts.5 We believe the real power of interpretability, however, 

lies in its correlation to trust. If we know something works well, and we know why it works well, then we are much more likely 

to trust it, and rely on it. Conversely, if we cannot rely on machine learning models then what opportunities are we missing out 

on? 

 

 

 

3 https://www.bbc.com/news/technology-

54175359#:~:text=The%20back%2Dup%20driver%20of,Tempe%2C%20Arizona%2C%20in%202018. 
4 https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html 
5 https://www.nature.com/articles/s42256-020-00257-z.epdf?sharing_token=VMBI-Iokx50rvr-

TxRie5NRgN0jAjWel9jnR3ZoTv0MXHH5Cwsvg3-c3drbqV45Glrtz54f1leY0_1VRr0DcLgLuXwOEXMOBDE-

KQ4r08bibg25tSUnQA65dAMyEyDxN3Yz4AyD_ewFexhOiWWIvOcUGq6v7h6e1CH7WvBb7alk%3D 

https://nips.cc/Conferences/2017/Schedule?showEvent=8728
https://www.nytimes.com/2017/11/21/magazine/can-ai-be-taught-to-explain-itself.html
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In truth, there are a range of reasons why some form of interpretability in AI systems might be desirable. These include:6 

• Giving users confidence in the system. 

• Safeguarding against bias. 

• Meeting regulatory standards or policy requirements. 

• Improving system design. 

• Assessing risk, robustness, and vulnerability. 

• Autonomy, agency, and meeting social values. 

• Understanding and verifying the outputs from a system. 

 

One of the most important things we must do is ensure those working in this area have shared context, i.e., that we have well-

accepted definitions of the terms we use. The Royal Society7 provide a list of definitions, useful at least as starting points in this 

work: 

• Interpretable, implying some sense of understanding how the technology works. 

• Explainable, implying that a wider range of users can understand why or how a conclusion was reached. 

• Transparent, implying some level of accessibility to the data or algorithm. 

• Justifiable, implying there is an understanding of the case in support of a particular outcome. 

• Contestable, implying users have the information they need to argue against a decision or classification. 

 

As (Lipton 2018) points out, model interpretability is often suggested as a remedy to the problem of humans unable to understand 

machine learning models, but few articulate precisely what interpretability means or why it is important. They break 

interpretability down into two types: transparency and post-hoc, a categorisation we find useful.  

 

It is worth noting that the problem of interpretability is not exclusive to AI. Underlying concerns about human comprehensibility 

and generating explanations for decisions is a general issue in cognitive science, social science, and human psychology. (Miller 

2018) 

 

 

 

 

 

 

6 https://royalsociety.org/-/media/policy/projects/explainable-ai/AI-and-interpretability-policy-briefing.pdf 
7 https://royalsociety.org/-/media/policy/projects/explainable-ai/AI-and-interpretability-policy-briefing.pdf 
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A subset of the many considerations in this rapidly growing field are captured in Figure 1. This taxonomy arranges models in 

terms of the kinds of explainability that are enabled (Miller 2018). 

 
Figure 1 Sample Range of XAI Techniques8 

 

 

3.1 Stakeholders 

Different users require different forms of explanation in different contexts i.e., interpretability will look different depending on 

who is using it, the most likely stakeholders to consider are: 

 

• Data scientists and developers, ML practitioners: 

o Benefited when debugging a model or when looking for ways to improve performance. 

• Business owners: 

o Caring about the fit of a model with business strategy and purpose. 

• Model risk analysts: 

 

8 https://arxiv.org/abs/2009.11698 
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o Challenging the model, in order to check for robustness and approving for deployment. 

• Regulators: 

o Inspecting the reliability of a model, as well as the impact of its decisions on the customers. 

• Consumers: 

o Requiring transparency about how decisions are taken, and how they could potentially affect them. 

 

 

Figure 2 Concerns faced by various stakeholders (Belle and Papantonis 2020) 

 

3.2 Reproducibility 

When it comes to reproducibility a Nature survey found that more than 70% of researchers have tried and failed to reproduce 

another scientist’s experiments, and more than half have failed to reproduce their own experiments. We believe making sure our 

research is reproducible is a cornerstone in making sure it is understandable. As stated in  (The Royal Society 2019), data quality 

and provenance are part of the explainability pipeline.  

This will be closely aligned with ongoing work in WP2 (Stakeholders identification, use cases definition, requirements 

specification, and architecture design), ensuring that the architecture being developed considers the full lifecycle of raw data to 

model output. There are a range of tools available that will be analysed in this context e.g., DVC to track models and data sets, 

TensorFlow Data Validation and Model Analysis to monitor the quality of deployed datasets and models, respectively. 
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Figure 3 Tracking Models and Datasets9 

 

3.3 Transparency 

A human-level understanding of the inner workings of the model 

Transparency is key because bias is embedded in our algorithmic world; it pervasively affects perceptions of gender, race, 

ethnicity, socioeconomic class, and sexual orientation. The impact can be profound, deciding for example who gets a job, how 

criminal justice proceeds, or whether a loan will be granted. 

 

Bias from an estimator is classically defined as the difference between the expectation over the data and the true underlying 

value from the distribution (Goodfellow, Bengio and Courville 2016). In the context of fair and trustworthy AI, bias refers to the 

discrimination produced when some classes or results are more heavily weighted than others or the nature of the underlying 

distribution is poorly represented by the training sample. 

 

There exist many different sources of introducing bias in an algorithm, from the dataset used in the training phase to unforeseen 

cases in model validation or extreme regularization. It is a significant risk in healthcare practice, for example, using of racial 

 

9 https://dvc.org/ 
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categories as a proxy of genomics when dealing with personalized medicine  (Bonham, Callier and Royal 2003) (Callier 2019) 

among other reasons such as historically under-represented populations. An infamous example of this kind of bias could be the 

application of Framingham’s’ risk score of any coronary heart disease event, fatal or non-fatal based on categories of age, sex, 

smoking status, total cholesterol and systolic blood pressure derived from the US population applied to the European populations. 

The studies carried out over European population evidenced that the reference score obtained from the US population 

overestimated absolute risk in populations with lower coronary heart disease rates (Conroy, et al. 2003). 

Many different efforts have been done in identifying and classifying the bias in AI.   

 

The mainly identify source are classified as (Barocas and Selbst 2016): 

1. Skewed data: This bias comes from the source of acquisition. 

2. Tainted data: The main cause of this bias comes from data modelling, categorization and labelling if the domain is not 

properly represented. 

3. Limited features: It is a common practice to reduce dimensionality of input features of a model, but it has the counterpart 

of inducing some bias in the model, sometimes intentionally, for example, in the case of feature engineering. 

4. Sample size disparities: The ideal dataset must provide balanced sets of the most sensitive features. 

5. Proxy features: There may be correlated features with sensitive ones that can induce bias even when the sensitive 

features are not present in the dataset, an example of this bias could be the use of race categories previously commented. 

 

Interpretability helps ensure impartiality in decision-making to correct from bias in the training dataset. Several research groups 

are currently focused on dealing with bias and fight against bad practices and biased datasets to avoid gender and racial 

discrimination. IBMs’ AI Fairness 360 toolkit provides metrics to detect and remove bias in datasets and models that could be 

hidden of overseen unintentionally. Microsoft’s Fairlearn is another open-source toolkit which provides interactive visualizations 

and bias mitigation algorithms to explore datasets prior to their use. Another example, could be the “Teach and Test” 

methodology framework from Accenture, which aims at helping decision making to overcome bias or other risks mainly focused 

on financial environments. 

 

 

 

https://en.wikipedia.org/wiki/Framingham_Risk_Score
https://www.ibm.com/blogs/research/2018/09/ai-fairness-360/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://research.nelson-hall.com/blogs/?avpage-views=blog&type=post&post_id=816
https://research.nelson-hall.com/blogs/?avpage-views=blog&type=post&post_id=816
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Figure 4 Potential Sources of Bias10 

 

There are various types of transparency in the context of human interpretability of algorithmic systems and several types and 

goals of transparency have been defined (Weller 2017) some of which have direct implications for FAITH (and healthcare AI in 

general): 

1. For a developer, to understand how their system is working, aiming to debug or improve it: to see what is working well 

or badly, and get a sense of why. 

2. For a user, to provide a sense for what the system is doing and why, to enable prediction of what it might do in 

unforeseen circumstances and build a sense of trust in the technology. 

3. For society, broadly to understand and become comfortable with the strengths and limitations of the system, overcoming 

a reasonable fear of the unknown. 

4. For a user to understand why one particular prediction or decision was reached, to allow a check that the system worked 

appropriately and to enable meaningful challenge. 

5. To provide an expert (perhaps a regulator) with the ability to audit a prediction or decision trail in detail, particularly if 

something goes wrong.  

6. To facilitate monitoring and testing for safety standards. 

7. To make a user (the audience) feel comfortable with a prediction or decision so that they keep using the system. 

 

 

10 https://blog.tensorflow.org/2019/12/fairness-indicators-fair-ML-systems.html 
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We intend to follow the examples of (Weller 2017) and (Doshi-Velez and Kim 2017) by striving for global interpretability (a 

general understanding of how an overall system works, as in the transparency types 2-3) and local interpretability (an explanation 

of a particular prediction or decision, as in types 4, 5, and 7. 

 

Informally, transparency is the opposite of opacity or blackbox-ness. It connotes some sense of understanding the mechanism 

by which the model works. Transparency as interpretability refers to the model’s properties that are useful to understand and can 

be known before the training begins.  (Lipton 2018) consider transparency at the level of the entire model (simulatability), at the 

level of individual components (e.g., parameters) (decomposability), and at the level of the training algorithm (algorithmic 

transparency). 

 

3.3.1 Simulatability 

Can a human walk through the model’s steps? 

This property addresses whether or not a human could go through each step of the algorithm and check if each step is reasonable 

to them. Could they predict its behaviour on new inputs? Linear models and decision trees are often cited as interpretable models 

using such justifications; the computation they require is simple, and it is relatively easy to interpret each of the steps executed 

when a prediction is made. This, however, isn’t a guarantee. A decision tree with ten nodes is easy to interpret but make that ten-

thousand nodes and understanding may become a challenge. 

 

3.3.2 Decomposability 

Is the model interpretable at every step or with regards to its sub-components? 

Can a model be broken down into parts e.g., input, parameters, and computations, and can these parts then be explained. 

 

3.3.3 Algorithmic Transparency 

Does the algorithm confer any guarantees? 

Understanding the procedure the model goes through in order to generate its output. 

This question asks if our learning algorithm has any desirable properties which are easy to understand. For example, we might 

know that the algorithm only outputs sparse models, or perhaps it always converges to a specific type of solution. In these cases, 

the resulting learning model can be more amenable to analysis.11 

 

 

11 https://thegradient.pub/interpretability-in-ml-a-broad-overview/ 
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3.4 Post-Hoc Interpretability 

(Lipton 2018) pose four questions on post-hoc interpretability, which refers to things we can learn from the model after 

training has finished.  

• Text Explanations: 

o Can the model explain its decision in natural language, after the fact? 

• Visualisation: 

o Generating visualisations that facilitate the understanding of a model. 

• Local Explanations: 

o Can the model identify what is/was important to its decision-making? 

• Two properties that any good feature attribution method should follow12: 

o Consistency. Whenever we change a model such that it relies more on a feature, then the attributed 

importance for that feature should not decrease. 

o Accuracy. The sum of all the feature importances should sum up to the total importance of the model. 

• Explanation by Example: 

o Can the model show what else in the training data it thinks are related to this input/output? 

 

 

3.5 Model Uncertainty 

When applying artificial intelligence algorithms to clinical practice it is important to provide clinicians with values that they can 

use as a reference for better informed decision making. A reliable system must accompany its predictions with a measure of 

uncertainty based on the premise that there is no such thing as a perfect system. Therefore, looking at uncertainty provides 

robustness to a system by allowing it to assess, for example, whether the system in question is basing its predictions on 

characteristics that can be considered artefacts. For example, the study by (Zech, et al. 2018) used an uncertainty measure to 

check how the accuracy of their x-ray imaging algorithm would lose precision if no brightness artifacts caused by the radiation 

shielding were seen. (Begoli, Bhattacharya and Kusnezov 2019) highlighted the importance of uncertainty quantification in 

guiding decisions based on Deep Learning algorithms. To help bound the overall confidence in predictions of medical 

applications epistemic uncertainty is usually determined using Bayesian neural networks; in theory, this uncertainty can be 

modelled (Natekar, Kori and Krishnamurthi 2020). However, a more practical and computationally simple approach is to 

approximate this Bayesian inference; it is typically performed by using dropout layers while testing the models, known as Test 

Timed Dropout (Gal and Ghahramani 2016). The use of uncertainty maps is another practice to provide better explainability of 

the models. 

 

12 https://towardsdatascience.com/interpretable-machine-learning-with-xgboost-9ec80d148d27 
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3.6 Pitfalls to Avoid 

(Molnar, et al. 2020) provides a useful summary of ML model interpretation pitfalls. There reasoning is that a number of 

techniques can actually lead to wrong conclusions if applied incorrectly. ML models usually contain non-linear effects and 

higher-order interactions. Therefore, lower-dimensional or linear approximations can be inappropriate and misleading masking 

effects can occur. As interpretations are based on simplifying assumptions, the associated conclusions are only valid if we have 

checked that the assumptions underlying our simplifications are not substantially violated. In classical statistics this process is 

called “model diagnostics” (Fahrmeir, et al. 2013) and (Molnar, et al. 2020) argue that a similar process is necessary for 

interpretable machine learning based techniques. 

The pitfalls are: 

• Bad model generalisation 

• Unnecessary Use of Complex Models 

• Ignoring Feature Dependence 

o Interpretation with Extrapolation 

o Confusing Correlation with Dependence 

o Misunderstanding Conditional Interpretation 

• Misleading Effect due to Interactions 

• Ignoring Estimation Uncertainty 

• Ignoring Multiple Comparisons 

• Unjustified Causal Interpretation 

 



 

Explainable AI Framework D4.5 

 

Public Deliverable 

 

22 

 

  

4 CURRENT TOOLS AND TECHNIQUES 

While Section 3 gave an overview of Explainable AI and related topics, in this section we discuss current tools and techniques 

that are used to facilitate Explainable AI.  

As can be seen in Figure 5 there are many techniques that have become popular in an attempt to make the models more 

explainable. In the same way, tools have emerged that allow them to be integrated both in the model creation phase and in the 

validation phase so that they can contribute to the current machine learning frameworks.   

Regarding those tools, the most popular ones are those that refer to the training phase. In this category we can find tools for the 

implementation of techniques such as Layer-wise Relevance Propagation (LRP), explainable embeddings and Integrated 

Gradients (IG). These techniques seek to understand the importance of the characteristics, identify the deviation of the data and 

debug the performance of the model.  

4.1 TF-Explain 

TF-Explain13 is the most common in practice library. TF-Explain provide tools for models trained in TensorFlow which are also 

compatible with TensorBoard which is useful since the smooth integration with TFs’ visualization interface/kit provides quick 

hands on with this framework library for local interpretability. 

 

The principal tools provided by this library are based on: 

Activations Visualization: More oriented to vision algorithms and convolutional layers, this component allows the visualization 

of the activations of hidden layers in order to visually interpretate the activations given a particular input in the network. 

Grad CAM: As an extension of the previous tool, it allows to visualize how parts of an image affects the output of the network, 

so it allows to provide some interpretation on which parts of the image are activating a classifier. 

Occlusion Sensitivity: This tool allows to study how partial occlusions of the image or input features, in the similar way that a 

dropout layer is applied, affects the confidence in predictions. 

SmoothGrad: allows the visualization of sensitivity maps which are based on gradients. This simple technique aims at 

explaining the inputs that triggers a decision by adding and removing noise through a sensitivity analysis.14  

Integrate Gradients: This is the most widely known techniques and it is already included in frameworks such as Keras. This 

approach integrates some call to the standard gradient operator and relies on an attribution methodology to assess sensitivity and 

implementation invariance to extract rules from them.15  

 

 

 

13 https://pypi.org/project/tf-explain/ 
14 https://arxiv.org/abs/1706.03825 
15 https://arxiv.org/pdf/1703.01365.pdf 

https://pypi.org/project/tf-explain/
https://arxiv.org/abs/1706.03825
https://arxiv.org/pdf/1703.01365.pdf
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4.2 Captum 

The analogous library Captum16 provides the same tools for the Pytorch framework covering a set of gradient-based and 

perturbation-based attribution algorithms. Figure 5 shows the attribution algorithms provided by this library. 

 

 

Figure 5 Sample Attribution Algorithms from Captum17 

 

4.3 What-If 

What-If Tool18 integrated in the aforementioned TensorBoard from Tensorflow provides validation tools to test if a model 

follows some fairness constrains. This is a very visual tool oriented to analyze the behavior of the algorithms. 

 

4.4 SHAP 

SHAP (SHapley Additive exPlanations)19 is developed by Scott Lundberg at the University of Washington. It is a unified 

framework for interpreting predictions. It assigns each feature an importance value for a particular prediction.  

SHAP computes Shapley values from game theory, by assuming that each feature value of the instance is a “player” in a game 

where the prediction is the payout. Then a prediction can be explained by computing the contribution of each feature to the 

prediction. Note SHAP has these desirable properties: 

 

16 https://captum.ai 
17 https://medium.com/pytorch/introduction-to-captum-a-model-interpretability-library-for-pytorch-d236592d8afa 
18 https://pair-code.github.io/what-if-tool/ 
19 https://github.com/slundberg/shap 

https://pytorch.org/
https://captum.ai/
https://medium.com/pytorch/introduction-to-captum-a-model-interpretability-library-for-pytorch-d236592d8afa
https://pair-code.github.io/what-if-tool/
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1. Local accuracy: the sum of the feature attributions is equal to the output of the model we are trying to explain 

2. Missingness: features that are already missing have no impact 

3. Consistency: changing a model so a feature has a larger impact on the model will never decrease the attribution assigned to 

that feature. 

SHAP supports tree ensemble, deep learning and other models. It can be used for both global and local explanation and it can be 

integrated with other techniques based on their modules: DeepExplainer, GradientExplainer and KernelExplainer. 

 

In the example in Figure 6 each customer has one dot on each row. The x position of the dot is the impact of that feature on the 

model’s prediction for the customer, and the colour of the dot represents the value of that feature for the customer. Dots that 

don’t fit on the row pile up to show density (there are 32,561 customers in this example). 

 

Figure 6 SHAP Example Plot 
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A similar approach to SHAP is also taken by InterpretML, with a comparison of their outputs shown in Figure 7Error! Reference 

source not found. 

 

Figure 7 Comparison of InterpretML and SHAP Plots 

 

4.5 LIME 

Local Interpretable Model-Agnostic Explanations (LIME)20 is based on the concept of surrogate models. When interpreting a 

black box model, LIME tests what happens to the predictions with variations of data, and trains local surrogate models with 

weighted features. Finally, individual predictions for “black box” models can be explained with local, interpretable, surrogate 

models. 

The LIME library provides the code to apply it to categorical, text and image datasets. It provides native support for SciKit Learn 

and can be easily integrated in TensorFlow through their text and tabular explainer classes or Pytorch through the Captum library. 

 

4.6 Anchors 

High-precision model-agnostic explanations. A method for learning rule lists that predict model behaviour with high 

confidence.21  

 

20 https://arxiv.org/abs/1602.04938 

21 https://homes.cs.washington.edu/~marcotcr/aaai18.pdf 

https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
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4.7 TreeExplainer 

Tree-based machine learning models are among the most popular non-linear predictive learning models in use today, with 

applications in a variety of domains. TreeExplainer provides a novel set of tools rooted in game theory that enables exact 

computation of optimal local explanations for tree-based models.  

It is the first tractable method capable of quantifying an input feature’s local importance to an individual prediction while 

simultaneously measuring the effect of interactions among multiple features using exact fair allocation rules from game theory.22 

It produces local explanations by assigning a numeric measure of credit to each input feature, such as factors that contribute to 

mortality risk as shown in Figure 8. 

 

Figure 8 TreeExplainer Example 

4.8 Model Cards 

Model cards are short documents accompanying trained machine learning models that provide benchmarked evaluation in a 

variety of conditions that are relevant to the intended application domains. Model cards also disclose the context in which models 

are intended to be used, details of the performance evaluation procedures, and other relevant information. 

 

22 https://news.cs.washington.edu/2020/01/17/seeing-the-forest-for-the-trees-uw-team-advances-explainable-ai-for-popular-

machine-learning-models-used-to-predict-human-disease-and-mortality-risks/ 
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Figure 9 Google Model Card Example 
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5 CONCLUSIONS 

 

This deliverable serves as an overview of the most interesting trends in the field of Explainable AI. What is clear from the range 

of research discussed is that there is no approach suitable for each and every scenario. This is in tune with how humans perceive 

explainability as well, since we know that there is not a single question whose answer would be able to communicate all the 

information needed to explain any situation (Belle and Papantonis 2020). 

 

As the clinical study protocol is finalised, and the FAITH platform architecture formalised, we now have a clear vision of where 

this task needs to go, and the areas we must tackle e.g. 

• Find better ways to formalise what we mean by interpretability, and through consultations with our clinical partners 

understand what explanations are desired. We can then design the architecture of the learning method(s) to give results 

that pertain to these explanations. 

• Ensuring that these interpretability approaches are actually providing value i.e., in the context of the project do they 

offer anything useful to patients and doctors. This point is important and maybe not so intuitive. A large study from 

Microsoft Research (Poursabzi-Sangdeh, et al. n.d.) found that there was no significant difference between a transparent 

model with few features and a black-box model with many features in terms of how closely participants followed the 

model’s predictions. 

• Defining what is important for FAITH, considering things such as the question of decreased performance and adoption 

o It is clear that black box models dominate in terms of results for many areas. Any additional work to induce a 

more interpretable model or derive a post-hoc explanation brings an additional cost. At this point, all the 

approaches towards improving model interpretability we have seen either increase training/processing time, 

reduce accuracy, or do some combination of both. 

o In applications where explainability is of utmost importance, it is worth considering using a transparent mode. 

The downside of this, is that these models often compromise performance for the sake of explainability, so it 

is possible that the resulting accuracy hinders their employment in crucial real-world application, so we need 

to figure out where FAITH lies on this spectrum. 

• At this point there is no established way of combining techniques (in a pipeline fashion) to produce a more complete 

explanation, so there is room for experimenting and adjusting them, according to the explanation at hand (Belle and 

Papantonis 2020). The question for us is not simply whether our ML is explainable, or whether one model is more 

explainable than other, but whether the FAITH system can provide the type of explainability that is necessary for our 

specific tasks and user groups. We believe there is real opportunity here for FAITH, particularly through our 

involvement in the Health & Care Cluster Working Group. 
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