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Executive Summary 

Objectives: 

This deliverable is the result from activities developed in T4.1 which comprised a comparative 

analysis mainly between the most important open-source Federated Learning libraries to define the 

Federated AI framework for the FAITH project, and an investigation on the most modern non-

federated AI/ML deployment practices to discover the optimum deployment approach for Edge AI. 

In the main section of the deliverable, a description of security and privacy in the context of Federated 

Learning is given, as well as federate strategies. Then, the most developed Federated Learning 

frameworks today are identified and an analysis of EDGE AI, model adaptation and devices for 

FAITH is done. 

This document helps to better understand how security and privacy should be managed within 

FAITH, as well as the necessary strategies so that the data of the participants is protected and usable 

according to the requirements of the study. On the other hand, to choose the Federated Learning 

framework to be used in the project, it is necessary to have a clear vision of the most current 

developments that exist and to be able to ensure the selection of the framework that will allow to meet 

the specific objectives of FAITH. 

This deliverable reflects the main ideas that will be used to distribute a globally trained artificial 

intelligence model to the different devices. Likewise, it will allow to understand what the most 

effective and efficient way is to train distributed models using local data and, it begins to lay the 

foundations to know how to combine the learning of these distributed models in order to produce an 

improved global model. 

Results: 

The primary results of this deliverable link with activities developed in T4.3 (explainable AI), T4.4 

(Guarantee that generated models can be exploited by compression pipeline) and T6.3 (trial 

environment), and comprise the following outcomes: 

• The definition of the security and privacy context within FAITH and the federate strategies. 

• The Identification of Federated Learning frameworks and libraries to discover the optimum 

deployment approach for Edge AI. 
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1 INTRODUCTION 

The privacy of user data has been highly threatened in this time. Large leaks have occurred in 

companies such as Facebook or the US Customs and Border Protection, thus exposing the data they 

had stored on users. These and other cases of breaches have caused great concern and have led many 

governments to establish regulations to protect user data, such as GDPR in the European Union [1], 

PDPA in Singapore [2] and CCPA [3] in the United States. Failure to comply with these regulations 

can generate a high cost for companies like Google i.e. fined 50 million euros for breach of the GDPR 

[4]. 

It has been due to the events discussed above, that Federated Learning (FL) has gained a lot of 

attention in recent times, being a collaborative learning where there is no need to share users' personal 

data. While machine learning, especially deep learning, has attracted a lot of attention recently, the 

combination of federation and machine learning is emerging as a hot new research topic [5]. 

Federated Learning enables multiple parties to jointly train a machine learning model without 

exchanging local data, while meeting the requirements of various research areas, such as distributed 

system, machine learning, and privacy. 

Federated learning has a couple of specific advantages: 

• Ensuring privacy since the data remains on the user’s device. 

• Lower latency because the updated model can be used to make predictions on the user’s device.  

• Smarter models, given the collaborative training process. 

• Less power consumption, as models are trained on a user’s device. 

 

 

 

 

 

 

 

 

 

Highlight difference between distribute learning and federate learning.  (WIT) Figure 1 Taxonomy of federated learning systems [5] 



 

Federated AI Framework & Methodology D4.1 (a) 

 

Public Deliverable 

 

10 
 

  

Figure 1, shows the classification of the different Federated Learning Systems by six aspects: data 

partitioning, machine learning model, privacy mechanism, communication architecture, scale of 

federation, and motivation of federation. To better understand this classification, these six aspects can 

be applied to a use case in which several hospitals use Federated Learning to improve the prediction 

of lung cancer. 

Data partitioning. It should be analysed how the medical records of patients are distributed among 

hospitals. Hospitals are likely to have different patients, however they may also have different 

information for a common patient. Therefore, both the non-overlapped instances and features in FL 

should be used. 

Machine learning model. Investigate which machine learning model should be adopted to 

accomplish the task. For example, to perform a classification task on diagnostic images, a 

convolutional neural network must be trained in FL. 

Privacy mechanism. A decision must be made on what techniques to use to protect privacy. Due to 

the high level of privacy of patient records, it is necessary to ensure that they cannot be inferred from 

the gradients and patterns exchanged. Differential privacy can be used to achieve privacy assurance. 

Communication architecture. The communication architecture must be determined. If there is a 

reliable server, then it can be the administrator in FL. If not, a decentralized environment must be 

adopted. 

Scale of federation. Unlike Federated Learning on mobile devices, in this scenario there is a relatively 

small scale and good stability of the federation. Furthermore, each part has a relatively large 

computing power, which means that more computing operations can be tolerated in the FL process. 

Motivation of federation. It should be taken into account what incentives each party to participate in 

FL. In the present use case, a clear and direct motivation for hospitals is to increase the accuracy of 

lung cancer prediction. For this, FL should achieve a model with greater precision than local training 

for all hospitals. 

Furthermore, Distributed Machine Learning (DML) covers the distributed training data storage and 

computations aspects, therefore DML is essentially designed to enhance the performance and 

scalability of the machine learning system in the presence of big data and large models. For instance, 

a typical DML system would have one server that splits the work over many computing nodes that 

act as workers. Each node works on a part of the dataset that is assigned to it, conducts a task such as 

the stochastic gradient descent (SGD), then sends back the weights of the local model to the server 
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which, in its turn, aggregates them [6]. There are two main categories of DML, namely: the DML 

that is motivated by the privacy, which ensures data security with decentralized sources of data; and 

the one that is motivated by the scalability, which aims to overcome memory and computation 

constraints via using different parallelism techniques. Not very different from DML, is the Federated 

Learning, which can be considered as a special type of DML, since both have many features in 

common, especially with regard to the data security and distributed datasets and training [7]. Beside 

enabling more privacy-preserving AI, Federated Learning solves some issues that exist in DML. For 

example, DML assumes that datasets are ideally distributed over the different sites, with 

approximately the same size and dimensions. On the other hand, Federated Learning does not have 

such underlying assumption, but rather it can work on heterogeneous datasets that differ in their sizes 

and dimensions [8], as will be shown in the next sections. Added to that, in Federated Learning, 

connected clients can involve light-powered smartphones or IoT devices that might also exhibit 

unreliable communication with the server, whereas in the DML systems, connected clients are 

typically nodes with high computational capabilities and fast network, such as the datacentres [9]. As 

a result, Federated Learning can be thought as an enhanced version of the distributed machine 

learning, that affords additional security and privacy of data and turns the one parameter server, in 

DML, into a coordinator party that assists connected clients to work together, hence Federated 

Learning disburdens the DML central server from many tasks that are typically performed by it. 
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2 ABBREVIATIONS AND ACRONYMS 

 

Abbreviation Description 

CPU Central Processing Unit. 

DML Distributed Machine Learning. 

DF Differential Privacy. 

FL Federate Learning. 

FTL Federated Transfer Learning. 

FATE Federated AI Technology Enabler. 

GDPR General Data Protection Regulation. 

HE Homomorphic Encryption. 

HFL Horizontal Federated Learning. 

ISO9001-2015 International Quality Management Systems. 

MPC Multi-Party Computation.  

ML Machine Learning. 

OT Oblivious Transfer. 

PPML Privacy-Preserving Machine Learning. 

PCA Principal Component Analysis. 

RAM Random Access Memory.  

ROM Read-Only Memory. 

SS Secret Sharing.  

SVD Singular Value Decomposition. 

TFF TensorFlow Federated. 

VFL Vertical Federated Learning. 

WP Work Package. 

WPL Work Package Leader. 
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3 SECURITY AND PRIVACY IN THE CONTEXT OF FEDERATED 

LEARNING 

Privacy-Preserving Machine Learning (PPML) is a term that broadly alludes to ML equipped with 

defence measures for protecting user privacy and data security. PPML is different from Secure ML, 

essentially, in the security infringement types that each deal with. Secure ML, on one hand, is 

confined to data integrity and availability, where an adversary manipulates the ML system to produce 

false negatives and/or false positives, hence the system becomes unusable. PPML, on the other hand, 

mainly deals with the privacy and confidentiality violations, where user’s sensitive information is 

revealed to the attacker [10]. 

3.1 Models of Privacy Threat 

There are different adversarial attacks that might target the ML privacy. For federated learning, 

however, the major concern is when an adversary uses reverse engineering techniques to reveal data 

used in training, in addition to any extra information about the model. Hence, in what follows, we 

overview the possible reconstitution attacks that can be conducted by an adversary.  

3.1.1 Reconstruction Attacks 

This attack can happen during the model training or model inference, in which the adversary aims to 

obtain training data or vectors of data features. The likelihood of such attack to happen increases in 

centralised learning, where different parties upload their raw data to a third party to perform 

computation, leaving raw data vulnerable to abuses. Contrary wise, in Federated Learning, each 

participant trains their model on local data, then model weights are only shared among different 

parties [11].  

3.1.2 Model Inversion Attacks 

In this type of attacks, the adversary conducts an equation solving attack, where they collect the 

responses of their queries sent to the model. The adversary might also be able to reconstruct the 

trained model by collecting enough query-response pairs, hence simulating the original model 

behaviour. In order to resist model inversion attacks, less information about the model should be 

visible, output should be limited and, if possible, rounded, and users of the model should always be 

granted a black-box access [12], [13].  
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3.1.3 Membership-Inference Attacks 

In this attack, although the adversary has a black-box access to the model, they leverage the 

differences between the model predictions on samples provided by the attacker, and model 

predictions on the training dataset. As a result, the adversary might be able to gain more knowledge 

about the training data used. Differential Privacy is a major defence technique to resist Membership-

Inference Attacks [14].   

3.2 Privacy Preservation Techniques 

3.2.1 Differential Privacy 

The main idea of Differential Privacy (DF) is to confuse adversaries when they attempt to query the 

database for individual information [14]. In federated learning, Local Differential Privacy (LDP) is 

enabled via a randomised response technique, in which every party perturbs their data, then release 

their unintelligible version to the server.  Hence, DP can be classified according to the perturbation 

applied into: 

1. Input perturbation: The noise is added to the training data. 

2. Objective perturbation: The noise is added to the objective function. 

3. Algorithm perturbation: The noise is added to the intermediate values (e.g. gradients). 

4. Output perturbation: The noise is added to the output parameters after training. 

There are two main schemes of DP, one is by adding noise according to the function sensitivity [14], 

and another by adding noise according to an exponential distribution among discrete values [15].   

For two datasets, D1 and D2, differing by only one record, and a function M: D → Rd over an arbitrary 

domain, the sensitivity of M is the maximum change in the output of M over all possible inputs: 

 

We denote the Laplace distribution with parameter b as Lap(b). Given a function M with sensitivity 

∆M, the addition of noise drawn from a calibrated Laplace distribution Lap(∆M / є) maintains є-

differential privacy [14] and given by: 

 

When an adversary queries the database, the ground truth of the sensitive data is returned with 

additional noise, hence the adversary is fooled. Nevertheless, since Laplace distribution is symmetric 

about the mean, the average of queries gets closer to the ground truth as the number of queries 
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increases. The latter is considered as the main limitation to DP. Therefore, a maximum number for 

queries should be imposed over a specific period of time, per participant. 

It should be pointed out that other distributions can be used, such as adding noise from the Gaussian 

or Binomial distribution. Although the latter may yield better accuracy, DP would be weaker [16].   

3.2.2 Secure Multi party Computation 

In Secure Multi-Party Computation (MPC), multiple parties cooperatively compute a function from 

their private inputs, without disclosing such inputs among the parties. Given a secret value x that is 

split into n shares, all parties can jointly compute: 

y1, …, yn = f (x1, …, xn) 

hence, each party Pi only knows xi and the corresponding yi. MPC protocol can be proved, against 

adversaries that corrupt some parties, via simulation paradigm [17]. 

Three different frameworks can be used to implement MPC: Oblivious Transfer, Secret Sharing, and 

Threshold Homomorphic Encryption. Since the latter shares the idea of secret sharing with Oblivious 

Transfer, we will only overview the first two frameworks.  

3.2.2.1 Oblivious Transfer 

Oblivious Transfer (OT) was first proposed by Robin in 1981 [18]. In this protocol, there is a sender 

and a receiver. The former owns a database of a message-index pairs (M1, 1), …, (MN, N) where at 

every transfer, the receiver picks an index i in [1, N], and receives Mi. As a result, the sender does 

not learn anything about the receiver’s selection, and the receiver does not learn any extra 

information about the database. 

3.2.2.2 Secret Sharing 

In Secret Sharing (SS), the secret value is hidden by splitting it into different segments, then 

distributing those shares to the different parties. Hence each party only known one part of the secret 

value [19], [20].  It should be pointed out that the arithmetic secret sharing is the most adopted SS-

based PPML approach, in which the addition operation is carried out at each party, locally. 

3.2.3 Homomorphic Encryption 

The main idea of Homomorphic Encryption (HE) is to conduct computation over a ciphertext 

without having to decrypt it [21]. Four functions build up the HE scheme H, as follows: 

H = {KeyGen, Enc Dec, Eval} 
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Where: 

• KeyGen: A cryptographic key generator as an input. 

• Enc: Encryption function. 

• Dec: Decryption function. 

• Eval: Evaluation function that takes the ciphertext and public key and outputs the 

corresponding ciphertext to the plaintext. 

HE schemes can involve an addition operation or a scalar multiplication, where that addition and 

multiplication are overloaded over ciphertexts, respectively [22].  

HE schemes can be classified into three main categories: 

1. Partially HE: Either the addition or the multiplication operation can be applied on ciphertexts 

for an unlimited number of times [21], [22]. 

2. Somewhat HE: Some of the operations can be applied on ciphertexts for only a limited 

number of times [23]. 

3. Fully HE: Both addition and multiplication operations cab be applied for unlimited number 

of times [24]. 

In-cloud computations on users’ data by using HE, allows for higher level of protection as data will 

only be received encrypted and only the user can disclose the computation results. 

3.2.4 Integration with GDPR 

General Data Protection Regulation GDPR came into force from May 2018 to establish 7 main pillars 

regarding the personal data processing [25] that enforces sturdy PPML rules with regard to data 

processing. These principles are: Transparency & Lawfulness, Minimization of Data, Limitation on 

Purpose, Limitation on Storage, Accuracy & Precision, Confidentiality & Integrity, and 

Accountability. Nevertheless, it is profound the influence of GDPR on the AI industry, due to the 

limitation and rules that constrain the collection and processing of data distributed over different 

parties [26].  That being said, in compliance with the GDPR, explicit consents from users should be 

obtained even in federated AI, before initiating model training, with detailed explanation of what 

users’ data will be used for. 

Data Subject, Data Controller and Data Processor, are the three main participants roles that have 

associated obligations under the EU GDPR [27]. Data Subject ought to provide the end-users the right 

of access to get full insights about how their personal data is being processed. Data Controller is the 

main Service provider, who is responsible for ensuring the Data Subject and applying the appropriate 
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measures to comply with the GDPR. Finally, Data Processor is also the Service Provider, but not any 

third party, which under Federated Learning provides simple aggregation mechanisms of the local 

models to be used in updating the global model. The following table provides a summary comparison 

between the traditional centralised ML and the federated ML, with respect to the GDPR roles: 

Table 1 Traditional Centralised ML vs Federated ML 

GDPR Role Traditional ML-based Service Centralised FL-based Service 

Personal Data Original training data Local model parameters 

Data Subject End-users End-users 

Data Controller Service Provider Service Provider 

Data Processor Service Provider, Third parties Service Provider 

One can see from the table how Federated Learning differs from traditional ML, mainly, but using 

the model parameters that have been trained locally, instead of the original data. Besides, FL does not 

involve any third parties for data processing. 
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4 FEDERATE STRATEGIES 

4.1 Horizontal Federated Learning 

Horizontal Federated Learning (HFL) is an example-partitioned Federated Learning that is applicable 

where datasets, over the different sites, have the same feature space, but differ in their sample space. 

Hence the term “horizontal”, which is derived from the “horizontal partition” term in the traditional 

view of databases. HFL condition is given by: 

Xi = Xj    ,   Yi  = Yj    ,    Ii ≠ Ij  ,    Ɐ Di  , Di  , i ≠ j   

where “X” is the feature space, “Y” is the sample space (assuming that they are the same), “I” is the 

user identifier and “D” is the dataset for the different ith and jth parties [8]. 

4.1.1 The Client-Server Architecture 

 Under this architecture, K clients collaborate to train the ML model with the assistance of a 

coordinator server. Here, we assume that both the clients and server are honest. However, we also 

consider the latter as curious. Therefore, we intend to stop any information leakage to the Server, 

from any Client [11]. The main four steps that are performed in such system are: 

1. Clients conduct training gradients locally, mask results with one of the PPML methods, and 

then send them to the coordinator server. 

2. The server conducts secure aggregation such as the weighted average. 

3. Aggregated results are sent back to the clients. 

4. Local models are updated on each client’s side.  

Those steps are repeated until the maximum number of iterations is reached or the cost function is 

converged. 

There are two main types of what clients send to the server. The first is where clients send the 

gradients of their model, and this type is called “Gradient Averaging” (a.k.a Federated Averaging or 

FedAvg for short), and the second is where clients the weights of model themselves to the server, and 

this type is called “Model Averaging” [28].  The following table summarizes the key differences 

between the two types: 
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Table 2 Gradient Averaging vs Model Averaging 

Method Pros Cons 

Gradient 

Averaging 

• Precise Information 

• Convergence is guaranteed 

• Communication is heavy 

• Steadfast connection is required 

Model 

Averaging 

• Sporadic Synchronization (not 

bound to synchronous stochastic 

gradient descent) 

• Convergence is not guaranteed 

• Loss in Performance 

 

4.1.2 The Peer-to-Peer Architecture 

Under this system, there is no coordinator server, rather it is a decentralized approach where each 

client is also a trainer or a worker. In this approach, each client trains their own model locally, then 

they securely transfer their model weights among each other [29],  [30]. As there is no coordinator, 

trainers should agree on an order protocol for communication among them. Basically, there are two 

modes to maintain the transmission order among workers:  

1) Cyclic Transfer: where clients are organized into a chain. The worker at the top of the chain 

sends weights to its downstream worker and so on. 

2) Random Transfer (a.k.a Gossip Learning):   where a trainer kth selects at random with equal 

probability a receiver with from a set {1,…, L}\{k}, then the latter updates its own model then 

sends at random to a receiver j in the set {1,…, L}\{j}. The process repeats until convergence 

[31].  

Due to the nature of HFL, it is best suited for applications powered by a huge number of mobile 

devices. In this case, the clients/consumers of the application themselves are being federated under a 

business-to-consumer paradigm [32]. 

4.2 Vertical Federated Learning 

Vertical Federated Learning (VFL) is an example of feature-partitioned federated learning, that 

follows a business-to-business paradigm, where the federated participants are organizations with 

different goals, but they are interested in cooperating with each other. VFL is applicable where 

datasets, over the different sites, have the same sample space, but differ in their feature space. VFL 

condition is given by: 

Xi ≠ Xj    ,   Yi  ≠ Yj    ,    Ii = Ij  ,    Ɐ Di  , Di  , i ≠ j   
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where “X” is the feature space, “Y” is the label space, “I” is the sample identifier and “D” is the 

dataset for the different ith and jth parties [26]. 

4.2.1 VFL Architecture 

In this system, there will be a number of organizations as participants and a third-party collaborator. 

We assume that the participants are honest but curious, whereas the collaborator is honest and 

legitimate (e.g. a government or secure nodes for computing such as SGX [33]). The training process 

in VFL is carried out under the following two steps: 

• Step 1: The system identifies shared entities between the participants via an encryption-based 

user ID alignment technique, without disclosing to which company each user belongs to [34]. 

• Step 2: Common entities will be used to train a joint machine learning model as follows [26], 

[35]: 

1. The third-part collaborator sends a public key to the participants. 

2. Participants encrypts their intermediate results for the loss or gradients then share 

them between each other. 

3. Participants add a mask to the computed encrypted gradients and loss, then send 

them to the collaborator. 

4. The third-party collaborator decrypts loss and gradient, then it sends the results back 

to the participants, who update their models after unmasking the gradients.   

Unlike HFL, participants under the VFL scheme need to interact with each other on a frequent basis 

due to the dependent computations required for exchanging the intermediate results. Hence, VFL 

requires a sturdy and reliable communication techniques as it is vulnerable to the failure in 

communications among participant due to the heavy exchanging of results. 

4.3 Federated Transfer Learning 

Federated Transfer Learning (FTL) is a learning framework that provides a federate solution when 

distributed datasets are heterogeneous. That is the participants’ local data do not share the feature 

space nor the sample space [36]. FTL enables different businesses and applications to collaborate to 

build sophisticated machine learning model, even if the participants have small data and few labels, 

while respecting the law of security and data privacy [26].  

FTL can be used in both HFL and VFL under the following three main categories: 
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1. Based on Instance: For HFL, participants can choose or reweight the samples of training data 

to reduce the difference among the distributions of each of the data drawn from the different 

participants’ sites. For VFL, participating parties can selectively pick the samples and features 

to avoid the negative transfer resulted from the quite different objectives of those businesses 

[37]. 

 

2. Based on Feature: For HFL, the representation or feature space that is common among 

participating parities can be learned by minimizing the maximum mean discrepancy [38]. For 

VFL, common feature space representation can be learned via minimizing the representations 

distance of the samples aligned among the different participating parties.  

 

3. Based on Model: Each of the federated party shares its model and learns from shared models. 

Otherwise, participating parties make use of models that are pre-trained as a part of the entire 

starting models for the task of Federated Learning. 

FTL utilizes the traditional transfer learning into the paradigm of PPML, in which the goal is to 

predict the labels of new unseen data (or existing ones) as precisely as possible, by exploiting 

transferred knowledge of the source domain, in a secure manner [36]. 
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5 FEDERATE LEARNING FRAMEWORKS 

There are several frameworks that allow you to integrate the advantages of Federated Learning. Table 

1, shows a comparison between the main Federated Learning systems, taking into account the models, 

data distribution strategy, security, among others. 

Table 3 Federated Learning Frameworks 

  
Federated AI 

Technology 

Enabler  

TensorFlow 

Federated 

(TFF) 

OpenMined 

PySyft 

PaddleFL 

Models 

Linear Models X x x x 

Decision 

Trees 

X _ _ _ 

Neural 

Networks 

X x x x 

Operative 

System 

Mac, Linux Mac, Linux, 

TF Lite 

Mac, Linux, 

Windows, 

PySyft for 

android 

Mac, Linux, 

Windows, 

Paddle Lite 

2.0 

Data 

Distribution 

strategy 

Horizontal x x x x 

Vertical x _ _ _ 

Security 

Differential 

Privacy 

_ _ x x 

Cryptographic 

Methods 

x x*
1
 x x 

Supports GPUs 

 
_ x _ _ 

Compatible 

Frameworks 

 
_ TensorFlow, 

Keras 

Pytorch, 

TensorFlow, 

Keras 

Paddle 

Network 

Implementation 

 
FATE Serving TF serving, 

TensorFlow.js 

PyGrid 
 

 Who is behind Webank's AI 

Department 

Google Facebook Baidu 

 

5.1 Federated AI Technology Enabler (FATE) 

FATE is an open-source project whose development was initiated by the Webank´s AI Department. 

It aims to provide a secure computing framework to support the federated AI ecosystem and 
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implements secure computing protocols based on homomorphic encryption and multi-party 

computing (MPC). It supports federated learning architectures and secure computation of various 

machine learning algorithms, including logistic regression, tree-based algorithms, deep learning, and 

transfer learning [39]. 

5.1.1 General Structure of FATE 

Figure 2, shows the general structure of FATE that has six main modules: EggRoll, FederatedML, 

FATE-Flow, FATE Serving, FATEBoard and KubeFATE [40]. 

Eggroll is a distributed infrastructure with a unity of computing, storage and communication targeted 

at large-scale machine learning and deep learning applications [41]. 

FederatedML includes federated algorithms and secure protocols. It currently supports training of 

many types of machine learning models in both horizontal and vertical federated environments, 

including NN, GBDT, and logistic regression. In addition, it integrates secure multi-party computing 

and homomorphic encryption to provide privacy guarantees [5]. 

FATE-Flow is a comprehensive pipeline platform for Federated Learning. Pipeline is a sequence of 

components specifically designed for highly flexible, high-performance federated learning tasks. That 

includes data processing, modelling, training, verification, publishing, and inference service [42]. 

FATE-Serving is a high-performance industrialized service system for Federated Learning models, 

designed for production environments [43]. This module provides the inference services for users. 

Supports loading FL models and making online inferences about them [5]. 

FATE-Board provides a visual way of probing models, from which you can efficiently reshape and 

enhance models; to facilitate understanding, tracking, debugging, and exploration of Federated 

Learning modelling, as well as examining, evaluating, and comparing multiple Federated Learning 

models [44]. 

Figure 2 The FATE system structure [5] 
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KubeFATE manages federated learning workloads using cloud-native technologies such as Docker 

or Kubernetes. This module enables federated learning jobs to run in public, private, and hybrid cloud 

environments [45]. 

In conclusion, FATE is a powerful and easy-to-use Federated Learning system. Simply configure the 

parameters to run a Federated Learning algorithm. In addition, it provides detailed documents on its 

implementation and use. However, since FATE provides algorithm-level interfaces, professionals 

must modify the FATE source code to implement their own federated algorithms. This is not easy for 

non-expert users [5]. 

5.2 TensorFlow Federated 

TensorFlow Federated (TFF) is an open-source framework for machine learning and 

other computations on decentralized data. TFF enables developers to simulate the federated learning 

algorithms that are included in their models and data, and to experiment with new algorithms. The 

building blocks provided by TFF can also be used to implement non-learning computations, such as 

aggregated statistics over decentralized data [46]. 

TFF provides two APIs of different layers [5]:  

FL API offers high-level interfaces. It includes three key parts, which are models, federated compute 

constructors, and data sets. It also provides the mock federated data sets and the functions to access 

and list the local data sets for FL. 

Federated Core (FC) API also includes lower-level interfaces as the basis of the FL process. 

Developers can implement their functions and interfaces within the federated core. Specifically, as a 

Python package, FC provides Python interfaces and developers can use them and write new Python 

functions. To be easy to use, especially for developers familiar with TensorFlow, it supports any type, 

such as tension types, sequence types, tuple types, and function types. Finally, FC supports several 

federated operators, such as federated sum, federated reduction, and federated broadcast. Developers 

can define their own operators to implement the FL algorithm. 

In conclusion, TFF is a lightweight system for developers to design and implement new FL 

algorithms. 

5.3 OpenMined PySyft 

PySyft is a Python library for secure and private deep learning. PySyft decouples private data from 

model training, using Federated Learning, differential privacy, and encrypted computing (such as 
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multi-party computing (MPC) and homomorphic encryption (HE) within leading deep learning 

frameworks such as PyTorch and TensorFlow [47]. 

Although PySyft provides several tutorials for implementation, it has not been found detailed 

information on the architecture of the system and its interfaces. 

5.4 PaddleFL 

PaddleFL is an open-source federated learning framework based on PaddlePaddle [48]. Researchers 

can easily replicate and compare different federated learning algorithms with PaddleFL. Developers 

can also benefit from PaddleF, because it is easy to implement a Federated Learning system in large-

scale distributed clusters. In PaddleFL, several Federated Learning strategies are provided with 

application in computer vision, natural language processing, recommendation, etc. It provides the 

application of traditional machine learning training strategies such as multitasking learning and 

transfer learning in federated learning environments. Based on PaddlePaddle's large-scale distributed 

training and elastic scheduling of training work in Kubernetes, PaddleFL can be easily deployed based 

on full-stack open-source software [49]. 

Figure 3 shows how the learning strategies that can be implemented with PaddleFL are categorized. 

Also, this Federated Learning system provides application demonstrations in natural language 

processing, computer vision, and recommendations. 

 

Figure 3 Paddle Strategies [49] 
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6 EDGE AI  

 

6.1 Model Optimization and Adaption Techniques 

Due to the constrained memory and compute capabilities, edge AI is undoubtedly limited in 

comparison with could-based modelling. Hence, researchers have focused their efforts on improving 

the existing frameworks to be more suitable for edge devices. In what follows, we overview the most 

popular state-of-the-art methodologies and technologies of model adaption and optimization for Edge 

AI. 

6.1.1 Model Comparison 

This category includes a variety of different approaches that are mainly based on exploiting the 

sparsity inherited of the weights and gradients in order to minimize the memory requirement, up to 

the hilt. Those approaches include, but not limited to: Dimensionality Reduction, Quantization, 

Pruning Precision Downgrading, and others. To enable the latter, technologies such as Principal 

Component Analysis (PCA), Singular Value Decomposition (SVD), and Huffman Coding, to name 

a few, are available. It should be pointed out that Model Compression is currently a very active 

direction in Edge AI as it is simple to implement, besides, it is suitable for both Model Training and 

Model Inference [50]. 

6.1.2 Algorithm Asynchronization 

Algorithm Asynchronization aims to aggregate local models under the Federated Learning 

framework, in an asynchronization manner. Simply put, participating devices exchange gradients and 

weights in a peer-to-peer way in order to alleviate high concurrency on wireless channel, where 

connected devices have high chances of not completing the model download or upload, due to the 

wireless network unreliability and congestion [51].  

6.1.3 Conditional Computation 

Approaches that apply Conditional Computation aim to switch off some unimportant calculations, 

selectively, as a block-wise dropout [52]. Input Filtering, Components Shutoff, Components Sharing, 

Early Exit,  Results Caching are popular examples of Conditional Computation approaches that are 

generally based on picking the most notable computation part or early stop once the threshold of 

threshold is reached. 
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6.1.4 Thorough Decentralization 

Thorough Decentralization aims to remove the central aggregator in order to avoid any private data 

disclosure. By using blockchain-based federated learning architecture, a trustworthy edge learning 

environment can be built, where the central server for model aggregating is not required any further 

[53]. 

The following table maps the model adaption approaches to their desired enhancements: 

Table 4 Enhancements of Model Adaption Methods 

Method Enhancement 

Model Compression Cost and Efficiency 

Algorithm Asynchronization Performance and Efficiency 

Conditional Computation Cost and Efficiency 

Thorough Decentralization Performance and Privacy 

 

6.2 Edge Frameworks 

In what follows, we review a set of frameworks that help developers run AI models on Edge, such as 

mobile, embedded, and IoT devices.  

Table 5 Comparison of the Different Edge AI Frameworks 

Framework Overview Pros Cons 

TensorFlow 

Lite 

 

Lightweight 

solution for mobile 

and embedded 

devices 

 Fast performance. 

 Enables low-latency 

inference of on-device 

machine learning models 

with a small binary size. 

 Some models are still 

relatively too big to 

store on devices. 

 TensorFlow Lite 

models have lower 

accuracy than their 

counterparts. 

TensorFlow.js 

 

Machine Learning 

using in JavaScript 

from scratch 

 NodeJS Powered. 

 Deploy python ML 

model directly into 

JavaScript. 

 Just available in 

JavaScript and 

TypeScript Languages 

Keras 

 

Deep Learning 

library for Theano 

and TensorFlow 

 Quality Documentation. 

 Easy and fast NN 

prototyping. 

 Models can be saved and 

used in TensorFlow Lite 

  Slower than its backend. 

  Requires extra work to 

make it work on mobile 

devices. 
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PyTorch 

Mobile 

 

A deep learning 

framework that 

puts Python first 

 Available for iOS, 

Android, and Linux 

 Relatively new. 

 Less deployment 

options compared to 

TensorFlow. 

ML Kit 

 

Machine learning 

for mobile 

developers by 

Google 

 It can be launched using 

Firebase. 

 For Android and iOS 

apps. 

 Custom models can be 

very large in size. 

 It might be challenging  

for a new developer to 

implement ML Kit. 

 

6.3 Edge Devices for FAITH 

The rapidly increasing hardware capability of mobile devices along with the recent advancements in 

ultra-low-power machine learning hardware, the development of new algorithms for low-power 

devices, and the emerging technologies in wireless network communications, in addition to the 

rapidly decreasing prices of smartphones and digital appliances, are the main players in the paradigm 

shift of artificial intelligence to the “edge” of the network. The latter led to unlock an entirely new 

class of smart applications that enable mobile devices of building and training machine learning 

models. 

Hereafter, we briefly overview the new computational capabilities and features, that have been added 

in new mobile devices, which clarify how FAITH is aligned with the trend and their feasibility for 

implementation. 

6.3.1 Storage 

Since 2012, there has been a noticeable increase in the storage capacity, where Random Access 

Memory (RAM) that is larger than 2GB and Read-Only Memory (ROM) that is larger than 16GB, 

have become dominant specs in more than 78% and 83% of manufactured smartphones, respectively 

[54].  Internal storage capacity is an important factor for Edge AI, as larger internal memory allows 

faster multi-task processing and loading of data, making small devices more capable of carrying out 

the machine learning training and inferences. 

6.3.2 Chipset 

The performance of Mobile devices can be boosted at more efficient energy consumption with multi-

code Central Processing Units – CPUs. Added to that, high-performant CPUs are required to support 

the training and data modelling in Edge AI. Hence, vendors of smartphone tend to pick chipset with 

powerful multi-core CPUs. Unsurprisingly, from 2013 onwards, Quad-core CPUs have replaced 
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Dual-core ones, and recently, it was noticeable the emergence of Octa-core CPUs, making Dual-core 

ones almost obsolete [55]. 

6.3.3 Battery 

Training AI models on Edge is considered a power-consuming task. Nonetheless, with the presence 

of lightweight AI and smart processors, and efficient network on Edge, battery drain has been reduced 

noticeably. The battery capacity in smartphones has been increased dramatically over the past few 

years. Since 2012, the battery capacity increased from less than 1750mAh to 2500mAh in 2015, and 

it is still surging to reach more than 5000mAh in many smartphones, nowadays [56]. LiPo batteries 

an Li-ion battery are the two main battery types on the market today, although they are relatively 

cheap, yet they efficiently boost the lifespan of the smartphone’s energy, with an average capacity of 

more than 3500mAh and very fast recharging capability [57]. 

6.3.4 Network 

With the presence of 4G network in late 2009, which offered much higher bandwidth, lower latency, 

and improved spectrum efficiency, the percentage of smartphone models that support 4G network 

increased from 20% to over 50% between 2012 and 2015 [56]. Moreover, the number of 4G LTE 

mobile phones in use worldwide, from 2014 to 2018, has increased from 257 to 921 million, according 

to Statista 2021. For instance, the results from the Mobile Consumer Experience Survey, which was 

conducted in 2019 by ComReg in Ireland, reveal that 62% of the smartphone holders use 4G network 

as their main service [58]. This dramatic change brought the computer closer to the user, making edge 

AI, certainly, more viable. 
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7 CONCLUSION 

This document defines the available Federated AI frameworks for the FAITH project, in addition to 

how to build and utilize machine learning models in Artificial Intelligence (AI) applications where 

data is dispersed on different sites and run by different people or organizations. We first overviewed 

the taxonomy of federated learning systems, and the main differences between it and the distributed 

machine learning, where we showed how Federated Learning solves some issues that exist in 

distributed machine learning. As we are in the era of big data, privacy and security requirements make 

it increasingly infeasible to merge the data at different organizations in a simple way. Hence, we 

discussed and showed the different Privacy-Preserving Machine Learning techniques that enable 

federated learning to build high-performance models that are shared among multiple parties while 

still complying with requirements for data confidentiality, user privacy and GDRP rules. Added to 

that, we presented the different federate strategies where we illustrated how federated learning is 

viable in scenarios where local data that is distributed over multiple sites, differ in their dimensions. 

We further compared the several open-source frameworks that allow to integrate the advantages of 

Federated Learning, and their pros and cons. Besides the security and privacy concerns, another 

strong inspiration for federated learning is to utilize the computing power at the edge devices of a 

cloud system, maximally, where the communication is boosted efficiently only when the computed 

results, are exchanged between the servers and devices, rather than the whole training data. Therefore, 

we overviewed the most popular state-of-the-art methodologies and technologies of model adaption 

and optimization for Edge AI, in addition to the new computational capabilities and features, which 

have been added in new mobile devices, which clarify how FAITH is aligned with the trend and their 

feasibility for implementation. As a result, this deliverable provides a well-grounded reference that 

shall help in shaping the initial implementation strategy of FAITH project, in addition to make a 

clearer vision of the upcoming development phase. Finally, it should be pointed out that this 

deliverable would receive further updates in M30, as/if required. 
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